Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose
نویسندگان
چکیده
The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal, and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca(2+) levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer), and of irregular, incomplete cell walls. In these events, Ca(2+) may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca(2+) and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis.
منابع مشابه
Dynamics of Calcium during In vitro Microspore Embryogenesis and In vivo Microspore Development in Brassica napus and Solanum melongena
Calcium is widely known to have a role as a signaling molecule in many different processes, including stress response and activation of the embryogenic program. However, there are no direct clues about calcium levels during microspore embryogenesis, an experimental process that combines a developmental switch toward embryogenesis and the simultaneous application of different stressing factors. ...
متن کاملEffects of Heat Shock and 2, 4-D Treatment on Morphological and Physiological Characteristics of Microspores and Microspore-Derived Doubled Haploid Plants in Brassica napus L.
Background: Stresses such as heat shock, starvation, or osmotic is essential to lead isolated microspores towards embryogenesis. Despite the effectiveness of stresses in embryogenesis, they exert adverse effects on metabolism and growth of the regenerated plants. Objectives: The effects of heat shock and 2,4-D treatment on total protein content of treated microspores, morphological and physiol...
متن کاملEffects of gibberellin, abscisic acid and embryo desiccation on normal plantlet regeneration, secondary embryogenesis and callogenesis in microspore culture of Brassica napus L. cv. PF704
Most of the microspore-derived embryos can not regenerate normally in rapeseed. The effects of gibberellins (GA3), abscisic acid (ABA), and embryo desiccation on normal plantlet regeneration were studied. The donor plants were grown in a growth chamber at day/night temperatures of 15/10˚C with a 16/8h photoperiod, respectively. Microspores were isolated from whole buds of 2.5-3.5mm in length, c...
متن کاملTranscript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus.
Isolated microspores of Brassica napus are developmentally programmed to form gametes; however, microspores can be reprogrammed through stress treatments to undergo appropriate divisions and form embryos. We are interested in the identification and isolation of factors and genes associated with the induction and establishment of embryogenesis in isolated microspores. Standard and normalized cDN...
متن کاملHeat-shock proteins 70 kDa and 19 kDa are not required for induction of embryogenesis of Brassica napus L. cv. topas microspores.
It is currently accepted that 'stress' triggers induction of microspore embryogenesis, and for Brassica napus L. cv. Topas it is heat-shock. It has been postulated that the heat-shock proteins (HSPs) generated during heat stress have a central role in the induction mechanism. To test this hypothesis we developed a microspore induction procedure, using colchicine instead of heat treatment. The l...
متن کامل